Alg I Honors - Mame: \qquad Teacher: Register Due: April $24^{\text {th }}$

Week 4 Online Learning

Week of April $20^{\text {th }}$ covers Algebra nation Section 7: Topics I-2. Use the Algebra Mation workbook and practice book you already have for Days I and 2.

Day I: Section 7 - Topic I: Geometric Sequences
Watch the video on Algebra Mation \& Complete Workbook p. 175 - 177
Complete Practice Book p. 109 - IIO \# - - 7
Day 2: Section 7 - Topic 2: Exponential Functions
Watch the video on Algebra nation \& Complete Workbook p. 178 - 182
Complete Practice Book p. III - II2 \#| - 7
Day 3: Geometric Sequences Practice \#|-14
Exponential Functions Practice \# I - 5
Day 4: Geometric Sequences and Exponential Functions Practice \#l-7
Day 5: Quiz covering Section $7-$ Topics $1 \& 2$
*Directions: Show ALL work; box/circle answer(s) unless there is a line for the answer.
Due: Friday, April $24^{\text {th }}$ by lo pm on Focus

4 Ms. Register

Office Hours: 9:00am - 10:00am
1:00pm - 2:00pm

Website: www.MsRegister.weebly.com
Email: registere@leonschools.net

Alg I Honors - Mame: \qquad Teacher: Register Due: April $24^{\text {th }}$

Day 3 - Geometric Sequences Practice

Determine whether each sequence is a geometric sequence. If yes, identify the common ratio.
I. $4,12,36,108, \ldots$
$2.5,10,15,20, \ldots$
3. $120,-60,30,-15, \ldots$
4. $1,-4,16,-64, \ldots$
$5.50,35,20, \ldots$
$6.625,125,25,5, \ldots$

Find the next three terms of the geometric sequence.
7. 4, 8, 16, \qquad , \qquad 8. $1,-6,36$, \qquad , \qquad , \qquad
9.486, 162,54, \qquad , \qquad ,
II. 240, - 120, 60, \qquad , \qquad
10. 3, 15, 75, \qquad , _ ,

Write an equation (recursive ε explicit) to find the nth term of each sequence. Then find a_{9}.
$13.5,20,80, \ldots$
14. $-2,10,-50, \ldots$

Recursive: \qquad Recursive: \qquad
Explicit: \qquad Explicit: \qquad
Exponential Functions Practice - Write an exponential function, $f(x)=a \bullet b^{x}$, represented by the table or graph
1.

x	0	1	2	3
y	2	14	98	686

3.

2.

x	0	1	2	3
y	-50	-10	-2	-0.4

4.

5. Suppose 15 animals are taken to an island, and then their population triples every 8 months. Write a function to represent the growth of the animals on the island over time. Use x to represent the number of months.
\qquad

Day 4 - Geometric Sequences and Exponential Functions Practice

1. For the function below, which set produces the sequence $-11,0,5$?

$$
k(n)=8 n-3 n^{2}
$$

A. $k(-1), k(0), k(1)$
B. $k(1), k(2), k(3)$
C. $k(-3), k(-2), k(-1)$
D. $k(-11), k(0), k(5)$
2. If a sequence is defined recursively by $f(0)=2$ and $f(n+1)=-2 f(n)+3$ for $n \geq 0$, then $f(2)$ is equal to
A. -11
B. 1
C. 5
D. 17
3. The third term in an arithmetic sequence is 10 and the fifth term is 26 . If the first term is a_{1}, which is an equation for the $n t h$ term of this sequence?
A. $a_{n}=8 n+10$
B. $a_{n}=8 n-14$
C. $a_{n}=16 n+10$
D. $a_{n}=16 n-38$
4. A certain type of lily plant is growing in a pond in such a way that the number of plants is growing exponentially. The number of plants N in the pond at time tis modeled by the function $N(t)=a b^{t}$, where a and b are constants and t is measured in months. The table shows two values of the function.

t	$N(t)$
0	150
1	450

Which equation can be used to find the number of plants in the pond at time t ?
5. A sequence is created from the function $k(n)=3 n+1$, where n represents the position of the term in the sequence. The sequence does not begin at 0 . Which list represents the first five terms of the sequence?
A. $5,6,7,8,9$
B. $4,7,10,13,16$
C. $4,7,11,18,29$
D. $6,9,12,15,18$

Alg I Honors - Name: \qquad Teacher: Register Due: April $24^{\text {th }}$ Day 4 Continued...
6. A population that initially has 20 birds approximately doubles every 10 years. Which graph represents this population growth?
A.

B.

C.

D.

7. Determine the exponential equation, $f(x)=a \bullet b x$, for each of the following graphs.

$f(x)=$ \qquad

$f(x)=$ \qquad

